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Abstract. We study the Drude weightD and the total optical weightK for a t– t ′–J model on
a square lattice that exhibits a metallic phase-modulated antiferromagnetic ground state close to
half-filling. Within a suitable 1/N expansion that includes leading quantum-fluctuation effects,
D and K are found to increase linearly with small hole doping away from the Mott metal–
insulator transition point at half-filling. The slow zero-sound velocity near the latter transition
identifies with the velocity of the lower-energy branch of the twofold excitation spectrum. At
higher doping values,D and K eventually saturate and then start to decrease. These features
are in qualitative agreement with optical conductivity measurements in doped antiferromagnets.

1. Introduction

The optical properties of the metallic state that emerges upon doping the insulating
Heisenberg antiferromagnet with mobile holes are of great interest because such a system,
currently described by at– t ′–J model, is believed to capture the low-energy physics of the
high-Tc superconducting copper oxide layers [1]. In the context of the latter model we have
recently calculated [2], using a suitable 1/N expansion, the real part of the finite-frequency
optical conductivity, i.e., the optical absorptionσ(ω), and found that its magnitude scales
with low hole concentration while its low-frequency line shape displays a structureless
broad-band regime. These results are in qualitative agreement with the generic properties
of the midinfrared band observed in optical conductivity measurements [3–5] in doped
antiferromagnets. Here we extend our earlier work [2] by presenting results for the Drude
weight D and the total optical weightK that determine the zero-frequency response of the
system and the optical conductivity sum rule, respectively. As is well known [6], the Drude
weight D serves as an order parameter for the Mott metal–insulator transition occurring in
such a system, hence the significance of its dependence on hole concentration and relevant
coupling constants. Furthermore, the fraction of the total optical weight residing at zero
frequency, i.e., the fractionD/K, defines the inverse of the mass enhancement factor.
The latter quantity is a direct measure of the strength of the quasiparticle interactions
or equivalently, in the context of the 1/N expansion, of the strength of the quantum
fluctuations.

The t– t ′–J model Hamiltonian can be expressed in terms of the Hubbard operators
χab = |a〉〈b| as

H = −
∑
i,j

tijχ
0µ

i χ
µ0
j + 1

2J
∑
〈i,j〉

(χ
µν

i χ
νµ

j − χ
µµ

i χνν
j ) (1)

where the index 0 corresponds to a hole, the Greek indicesµ, ν, . . . assume two distinct
values, for a spin-up and a spin-down electron, and the summation convention is invoked.
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HereJ is the antiferromagnetic spin-exchange interaction between nearest-neighbour sites
〈i, j〉 on a square lattice, while for the hopping matrix elementstij we assume

tij =


t if i, j are nearest neighbours

−t ′ if i, j are next-nearest neighbours

0 otherwise.

(2)

Our conventions in (2) incorporate opposite signs fort and t ′ as dictated by quantum
chemistry calculations [7, 8] for Cu–O clusters and fits of the shape of the Fermi surface
observed by angle-resolved photoemission spectroscopy [9]. In [10] we generalized the
local constraint associated with (1) toχ00

i + χ
µµ

i = N , whereN is an arbitrary integer,
and simplified the commutation properties of theχabs to be those of the generators of
the U(3) algebra. A generalized Holstein–Primakoff realization of this algebra in terms of
Bose operators can then be employed to develop a perturbation theory based on the 1/N

expansion, restoring the relevant physical valueN = 1 at the end of the calculation. For
an average electronic densityne close to half-filling (ne . 1) and a sufficiently larget ′,
the ground state of (1) in the large-N limit is an unconventional metallic antiferromagnetic
(AF) state characterized by the usual(π, π) modulation of the spin configuration and an
unusual(π, −π) phase modulation of the condensate [10]. It is the optical properties of
this phase-modulated AF state that the present work is concerned with.

The remainder of this paper is organized as follows. Section 2 contains a brief summary
of the relevant Kubo formalism for the optical conductivity. In section 3 we derive the
analytic expressions of the 1/N expansion for the Drude weight and the total optical weight,
including leading quantum-fluctuation effects. In section 4 we present explicit numerical
results for the latter quantities along with some further comments on the optical absorption
and a discussion of the zero-sound velocity which is related to the Drude weight and the
inverse compressibility. Our conclusions are summarized in section 5.

2. Kubo formalism

Using standard linear-response theory, the Kubo formula for the real part of the frequency-
dependent optical conductivitỹσ(ω) at zero temperature is expressed as the sum of two
physically distinct terms [11, 12]:

Re[σ̃ (ω)] = πe2Dδ(ω) + σ(ω). (3)

The first term in (3), involving the delta function at zero frequency (ω = 0), is due to
the free acceleration of the charge-carrying mass by the electric field and therefore the
associated spectral weight, i.e., the Drude weightD, should vanish in the insulating state
and be finite in the metallic state [6].D measures the ratio of the density of the mobile
charge carriers to their mass. The second term in (3), called the optical absorptionσ(ω),
is due to finite-frequency (ω > 0) optical transitions to excited quasiparticle states. More
explicitly we have that

σ(ω) = π

ω3

∑
m6=0

|〈m|J |0〉|2δ[(Em − E0) − ω] (4)

where the summation is taken over a complete set of energy eigenstates|m〉 with excitation
energies(Em − E0) above the ground state|0〉, 3 is the total number of lattice sites, andJ

is one of the Cartesian components of the current operatorJ associated with (1),

J = ie
∑
i,j

tij (Ri − Rj )χ
0µ

i χ
µ0
j (5)



The Drude weight in at– t ′–J model 5091

whereRi is the position vector for sitei. Similarly, the Drude weightD is given by

D = K − 2

e23

∑
m6=0

|〈m|J |0〉|2
Em − E0

(6)

whereK is the expectation value

K = 2

z3
〈0| −T |0〉 (7)

with the operatorT defined as

T = −
∑
i,j

tij |Ri − Rj |2χ0µ

i χ
µ0
j (8)

where z = 4 is the coordination number of the square lattice. Integrating now, over
frequency, both sides of (3), using the identity

∫ ∞
0 dω δ(ω) = 1

2 and the explicit forms (4)
and (6), we arrive at the well-known optical conductivity sum rule [13]∫ ∞

0
dω Re[σ̃ (ω)] = πe2

2
K (9)

which, indeed, identifiesK as the total optical spectral weight.
It should be noted that in lattice models involving only nearest-neighbour hopping,T

defined in (8) coincides with the kinetic energy operator given by the first term on the right-
hand side of (1). However, the presence of an additional next-nearest-neighbour hopping,
i.e., a hoppingt ′ along the diagonal of the square unit cell as in thet– t ′–J model under
study, invalidates the latter simple result, noting that:|Ri − Rj |2 = 2, for next-nearest-
neighbour sitesi, j . Therefore in this more general case, the total optical weightK given
by (7) is not just the kinetic energy expectation value in the ground state. Nevertheless,
by an elementary application of the Hellmann–Feynman theorem,K can still be extracted
from the ground-state energy〈0|H |0〉 by differentiation with respect to the hoppings [14]t

and t ′:

K = − 2

z3

(
t

∂

∂t
+ 2t ′

∂

∂t ′

)
〈0|H |0〉. (10)

The identity (10) is actually implemented in the following section to derive the leading
terms of the 1/N expansion ofK from the corresponding terms of〈0|H |0〉 which our
theory readily provides.

3. 1/N expansion

The 1/N expansion of the Hamiltonian (1) and the optical absorption (4) around the phase-
modulated AF configuration, up to and including terms of orderN , has been carried out
in our earlier work [10, 2]. For ease of reference, we quote in (11)–(14) the main results
necessary for our present development. Specifically, the expansion of the Hamiltonian (1)
reads [10]

H = N23E0 + N3E1 + N
∑

q

[
ω1(q)A∗

qAq + ω2(q)B∗
qBq

]
(11)

whereE0 and E1 are the classical (large-N limit) and zero-point energy per lattice site,
respectively, for the relevant physical valueN = 1:

E0 = −zt ′ne(1 − ne) − zJ

4
n2

e

E1 = −zt ′

2
(2 − ne) − zJ

4
ne + 1

23

∑
q

[ω1(q) + ω2(q)] .
(12)
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In the aboveAq and Bq are the normal-mode operators that diagonalize the leading
(quadratic) quantum fluctuations whileωn(q), n = 1, 2, are the dispersions of the two
branches of the spectrum of elementary excitations. An immediate consequence of (11) is
the following result for the 1/N expansion of the ground-state energy, up to and including
terms of orderN :

〈0|H |0〉 = N23E0 + N3E1. (13)

The corresponding expansion of the optical absorption (4) reads [2]

σ(ω) = N
2π(et)2

ω3

∑
q

u2(q)δ[ω1(q) + ω2(q) − ω]. (14)

The analytic expressions for the dimensionless functionu2(q), corresponding to the current
matrix elements, and the dispersionsωn(q), n = 1, 2, are rather involved and are
summarized in the appendix. The result (14) has been extensively discussed in our earlier
work [2] while some further comments are added in section 4.

At present, an important point to note in (14) is the lack of a classical contribution,
i.e., a term of orderN2, to σ(ω). In other words, the finite-frequency componentσ(ω)

of the optical conductivity is dueexclusivelyto the quantum fluctuations whose leading
contribution, within the present 1/N expansion scheme, is of orderN . This conclusion is
consistent with similar observations made by Bang and Kotliar [15] for the finite-frequency
optical conductivity of the simplet–J model treated by a slave-boson diagrammatic 1/N

expansion technique.
The derivation of the 1/N expansion of the Drude weightD and the total optical weight

K, up to and including terms of orderN , proceeds now in two steps: (i) the result (13) is
used to implement identity (10); and (ii) the second term on the right-hand side of (6) is
expressed initially as the integral of (4) over positive frequencies and then (14) is exploited
to obtain immediately its 1/N expansion. Taking into account (12), the final analytic results
of this straightforward procedure may be written in the form

D = N2D0 + ND1 (15)

K = N2K0 + NK1 (16)

whereD0 and K0 are the classical (large-N limit) contributions to the Drude weight and
the total optical weight, respectively:

D0 = K0 = −2

z

(
t

∂

∂t
+ 2t ′

∂

∂t ′

)
E0 = 4t ′ne(1 − ne) (17)

while D1 and K1 are the corresponding contributions due to leading quantum-fluctuation
effects:

K1 = −2

z

(
t

∂

∂t
+ 2t ′

∂

∂t ′

)
E1 (18)

D1 = K1 − 4t2

3

∑
q

u2(q)

ω1(q) + ω2(q)
. (19)

The equality D0 = K0 quoted in (17) is a consequence of the absence of quantum
fluctuations in the large-N limit and implies that in this classical approximation, described by
the terms of orderN2, theδ-function Drude peak centred at zero frequency (ω = 0) carries
the total optical weight. However, as noted earlier on, the leading quantum fluctuations,
described by the terms of orderN , already give rise to optical absorption and hence distribute
part of the total optical weight to finite frequencies (ω > 0). The presence of the terms
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of orderN in (15) and (16) leads therefore toD < K; a generic property anticipated also
from (6) and (19).

Figure 1. Optical absorptionσ(ω) (in units of e2/h̄) over hole concentration(1 − ne) versus
frequency for 1−ne = 0.10, t/J = 1.0 (solid line) ort/J = 1.5 (dashed line), and (a)ε = 0.45,
(b) ε = 0.40.

In view of (12) and the explicit forms quoted in the appendix, the derivatives with
respect tot and t ′ appearing in (18) can be carried out analytically. The remaining wave-
vector integrations over the square Brillouin zone in (18) and (19), as well as in (14), can
then be performed numerically. Explicit numerical results derived from (15)–(19) in the
way just described are presented in the following section.

4. Explicit results

For completeness and better insight into the results for the Drude weight and the total optical
weight that will be presented shortly, it is instructive to begin our discussion here with some
examples of the optical absorption line shapeσ(ω). In figure 1 we showσ(ω), determined
from (14) with N = 1, for typical values of the dimensionless ratiosε = t ′/t , t/J and the
hole concentration(1− ne) that are relevant for the copper oxide layers [7, 8, 9]. As noted
in [2], the limiting valueσ(ω → 0) is finite, at finite hole doping, while for small doping
values (such as the 10% hole doping considered in figure 1) the high-frequency divergence
of σ(ω) comes from theq = (π/2, π/2) point of the Brillouin zone. The frequency position
of this peak (divergence) is then determined as

[ω1(q) + ω2(q)]q=(π/2,π/2) = zt ′(2 − ne) + zJ

2
ne (20)
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and apparently is independent of the nearest-neighbour hoppingt . For the parameter values
corresponding to the solid line of figure 1(a), the peak position ofσ(ω) calculated from
(20) is given byω = 3.78J . The latter value, with an estimated [16–18]J ≈ 0.13–
0.16 eV, accounts aptly for theω ≈ 0.5 eV peak of the midinfrared band observed in
optical conductivity measurements [3, 4, 5] in doped antiferromagnets.

From the explicit form (20) it follows that close to half-filling and for parameters
satisfying 2tε/J < 1 the peak ofσ(ω) shifts slowly to lower frequencies upon hole doping,
i.e., with increasing(1−ne). Such a systematic shift of the peak of the midinfrared band is,
indeed, observed in the aforementioned optical conductivity measurements. Interestingly
enough, close to half-filling the same condition 2tε/J < 1 has been shown in [10]
to ensure the softening of the magnon velocity upon hole doping—a trend that is also
observed in inelastic neutron scattering measurements from doped antiferromagnets [16, 17].
The present theory provides therefore a context for the qualitative understanding of both
experimental observations. Concluding our comments onσ(ω) we note that (3) and (9)
yield

∫ ∞
0 dω σ(ω) = (πe2/2)(K − D). Therefore, the spectral weight carried by the finite-

frequency componentσ(ω) is given by the differenceK − D, and hence its dependence on
the parametersε, t/J , andne follows from that ofD andK.

Let us now consider the large-N limit contributionsD0 andK0 to the Drude weight and
the total optical weight, respectively. The equality of these two quantities has already been
discussed following (19). Here we note that the vanishing overlap between the opposite
sublattice spin states in the AF configuration, along with the absence of quantum fluctuations
in the large-N limit, leaves the direct hoppingt ′ between same sublattice sites as the only
relevant process of charge transport in this classical approximation. This argument makes
plausible the independence ofD0, K0 from t andJ seen in (17).

Furthermore, thene-dependence in (17) implies that: (i)D0 = K0 ∝ ne, for ne → 0;
and (ii) D0 = K0 ∝ (1 − ne), for ne → 1. The linear increase ofD0 and K0 with small
electron densityne away from the empty-lattice limit (ne = 0) is, of course, an expected
behaviour in this ‘free’-electron gas regime. On the other hand, the linear increase ofD0

andK0 with small hole concentration(1−ne) away from the half-filled-band limit (ne = 1)
is an important consequence of the local constraint which prohibits the occupancy of any
lattice site by more than one electron and leads inevitably to the Mott insulator at half-
filling (D0 = 0 = K0, for ne = 1). The latter property, typified in point (ii) above, serves to
interpret the ‘free’ charge carriers near half-filling as being holes rather than electrons. Then,
the position of the maximum ofD0 located at quarter-filling (ne = 1

2) provides an estimate
of the critical amount of doping at which the character of the charge carriers changes from
holelike to electronlike with increasing(1 − ne). The present large-N limit results already
capture generic features of thene-dependence of the Drude weight and the total optical
weight that are derived by exact diagonalization of the simplet–J model and the large-U

Hubbard model on small clusters [19, 20, 1]. The reason can be traced to the fact that our
generalized Holstein–Primakoff realization [10] resolves explicitly the local constraint, and
thus the ensuing 1/N expansion incorporates already part of the strong-correlation effects,
implied by this constraint, in the leading order.

As a check of consistency of the quantum-liquid description emerging from the present
1/N expansion scheme it is worthwhile at this point to discuss briefly the zero-sound
velocity, i.e., the velocity of the long-wavelength charge excitations, in the physically
relevant regime near half-filling (ne → 1). As demonstrated in detail in [10], a separation
of spin and charge degrees of freedom sets in progressively and becomesasymptotically
exact as the half-filled-band limit is approached. The latter limit permits then an accurate
classification of the elementary excitations in terms of a mode that describes the spin
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excitations and a mode that describes the charge excitations. At long wavelengths (|q| → 0),
in particular, the latter mode corresponds to the lower-energy branch of the twofold
excitation spectrum given byω2(q) = c2|q|. Thus near half-filling (ne → 1) the velocity
of the long-wavelength charge excitations is given byc2. On the other hand, in the context
of conventional quantum-liquid theory [21] the zero-sound velocity may be expressed
in terms of the Drude weightD0 and the inverse compressibility 1/κ = n2

eE
′′
0, where

E′′
0 = ∂2E0/∂n2

e , as
√

D0/(n2
eκ) = √

D0E
′′
0 . Hence the consistency of the quantum-liquid

description requires the validity of the identityc2 = √
D0E

′′
0, for ne → 1. The asymptotic

form of c2 for ne → 1 has been derived in [10] by considering explicitly the long-wavelength
limit of ω2(q). Here, using (12) and (17) to calculate

√
D0E

′′
0 and comparing with the latter

result forc2, one can easily verify that indeed [22]

c2 =
√

D0E
′′
0 = 2ε

[
2ztJ

(
t

J
− 1

4ε

)
(1 − ne)

]1/2

for ne → 1. (21)

In view of the radically different way in whichc2 and
√

D0E
′′
0 are derived, the relation (21)

provides a stringent consistency check of our theory and serves to identify unambiguously
c2 as the slow zero-sound velocity forne → 1. Furthermore, from (12) it follows that
E′′

0 is independent ofne. Hence (21) reveals that the physical reason for the softening of
the velocityc2 of the lower-energy branchω2 near the Mott metal–insulator transition at
half-filling (c2 ∝ √

1 − ne → 0, for ne → 1) is the collapse of the Drude weight, which
in turn is a direct consequence of the local constraint. It should be noted that this slow
zero-sound mode near the Mott transition appears also in slave-boson treatments of the local
constraint when the fluctuations of the associated statistical gauge field are taken into account
beyond the mean-field approximation [23]. Concluding our discussion of the zero-sound
velocity we note that away from the asymptotic regimene → 1 and with increasing hole
concentration,ω2 (as well asω1) involves an increasingly strong hybridization between spin
and charge degrees of freedom, and consequentlyc2 no longer corresponds to the velocity
of the long-wavelength charge excitations.

Having analysed the classical (large-N limit) contributions to the Drude weight and the
total optical weight, we consider in the remainder of this section the complete results for
D andK that include the leading quantum-fluctuation corrections, as determined from (15)
and (16), respectively, withN = 1. In figure 2 (forε = 0.45) and figure 3 (forε = 0.40)
we draw as a function of the hole concentration(1 − ne): (a) the Drude weightD, (b) the
total optical weightK, and (c) the fractionD/K, for t/J = 1.0 (solid line) ort/J = 1.5
(dashed line). For comparison, in each figure we also depict by a dotted line the classical
(large-N limit) result for the quantity shown: (a)D0, (b) K0, and (c)D0/K0. We recall
that the latter classical results, determined from (17), are independent of the ratiot/J . Our
main observations from figure 2 and figure 3 are summarized as follows.

(i) D and K increase linearly with small hole concentration(1 − ne) away from the
Mott metal–insulator transition point at half-filling (ne = 1), consistent with the notion that
the ‘free’ charge carriers in this regime are the holes. However, as a result of the leading
quantum fluctuations,D andK are no longer equal. Close to half-filling and for the typical
values ofε and t/J considered, the fractionD/K is reduced from its ‘classical’ value of 1
to about 0.5 and is almost independent of(1 − ne) in the doping range of interest; see the
solid and dashed lines in figure 2(c) and figure 3(c). These results are consistent with optical
conductivity measurements [3–5] in doped antiferromagnets. In particular, forε = 0.45,
t/J = 1.0, corresponding to the solid line of figure 2(c), and a typical 10% hole doping
we have: D/K = 0.52, corresponding to a mass enhancement factorK/D = 1.92. The
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Figure 2. For ε = 0.45 and t/J = 1.0 (solid
line) or t/J = 1.5 (dashed line), including leading
quantum-fluctuation effects: (a) Drude weightD versus
hole concentration. (b) Total optical weightK versus
hole concentration. (c) FractionD/K versus hole
concentration. In each figure, the dotted line is the
classical (large-N limit) result for the quantity shown
and is independent oft/J according to equation (17).

Figure 3. For ε = 0.40 and t/J = 1.0 (solid
line) or t/J = 1.5 (dashed line), including leading
quantum-fluctuation effects: (a) Drude weightD versus
hole concentration. (b) Total optical weightK versus
hole concentration. (c) FractionD/K versus hole
concentration. In each figure, the dotted line is the
classical (large-N limit) result for the quantity shown
and is independent oft/J according to equation (17).

latter value compares reasonably well with the experimental estimate [4](K/D)exp ≈ 2.3.
Furthermore, our typical valueD/K = 0.52 is compatible with the corresponding prediction
of 0.6 derived by exact diagonalization [20] and anyon techniques [24] for the simplet–
J model, and implies that 52% of the total optical weight resides at the zero-frequency
Drude peakπe2Dδ(ω) while the rest is carried by the finite-frequency componentσ(ω).
It should be noted that the strength of the quasiparticle interactions, as inferred from the
mass enhancement factorK/D ≈ 2.0, is not exceptionally large [4]. This fact, however, is
not surprising noting that important correlation effects, implied by the local constraint, are
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already absorbed into the charge carrier density which near half-filling is given by the hole
concentration 1− ne that vanishes atne = 1, leading to the Mott metal–insulator transition.

(ii) At higher doping values,D and K eventually saturate and then start to decrease.
However, the leading quantum fluctuations shift the maximum ofD andK away from its
‘classical’ location at quarter-filling towards half-filling. This shift is small and slightly
different for D and K. As noted earlier on and emphasized by Dagottoet al [20], the
position of the maximum ofD provides an estimate of the doping value at which the charge
carriers change from holelike to electronlike with increasing(1− ne); hence at roughly the
same position the Hall coefficientRH should change sign from positive to negative. For
ε = 0.45 (0.40) andt/J = 1.0, corresponding to the solid line of figure 2(a) (figure 3(a)),
the maximum ofD occurs at the hole concentration 1− ne = 0.44 (0.36). The latter result
is then compatible with numerical and analytical calculations [25] ofRH , in the context of
the simplet–J model, that predict a sign change at a hole concentration of about 0.40–0.33,
and with Hall effect measurements [26] in doped antiferromagnets that report a sign change
of RH at a hole concentration of about 0.3.

(iii) We cannot approach the ‘free’-electron gas regime close to the empty-lattice limit
(ne = 0), because the phase-modulated AF configuration, around which the present 1/N

expansion is carried out, becomes unstable beyond a critical value of the hole concentration
(1 − ne). The intervening instability is reflected in the elementary excitations whereby the
velocity c2 of the lower-energy branchω2 becomes zero at the critical doping value [10].
This results in a very rapid decrease ofD, K, andD/K in the immediate neighbourhood
of the latter doping value—a behaviour clearly seen in figure 2 and figure 3. In this critical
doping regime, the magnitude of the (negative) leading quantum-fluctuation correctionsD1

andK1 becomes even larger than that of the classical (large-N limit) termsD0 andK0, and
therefore the 1/N expansion breaks down.

(iv) Finally, by comparing the solid and dashed lines in figure 2 and figure 3 we conclude
that at any given doping valueD, K, andD/K all increase with increasingt ′ and/orJ .
This trend is consistent with similar results derived by exact diagonalization of thet–J

model, extended to include the so-called three-site term [19], and of the Hubbard model
[20]. Therefore, this trend should be regarded as being generic for models involving a direct
or an effective hopping between same sublattice sites.

5. Conclusions

In this paper we have presented a detailed study of the Drude weightD, the total optical
weight K, and the fractionD/K that defines the inverse of the mass enhancement factor,
in the phase-modulated AF state of thet– t ′–J model (1), (2). The generic features of these
quantities observed in optical conductivity measurements [3–5] in doped antiferromagnets
are qualitatively reproduced when the leading quantum-fluctuation effects, around the
aforementioned semiclassical ground state, are taken into account within a suitable 1/N

expansion.
Specifically,D and K increase linearly with small hole doping away from the Mott

metal–insulator transition at half-filling, consistent with the notion that the ‘free’ charge
carriers in this regime are the holes. Our theoretical prediction of a mass enhancement
factorK/D ≈ 2.0 that is almost independent of the hole concentration, in the doping range
of interest, compares reasonably well with the corresponding experimental estimate [4].
With increasing hole dopingD (and K) eventually reaches a maximum at a value that is
compatible with measurements [26] of the critical doping at which the Hall coefficientRH

changes sign from positive to negative, signalling a change in the character of the charge
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carriers from holelike to electronlike. Furthermore, for typical parameter values the peak
position (20) of the finite-frequency componentσ(ω) of the optical conductivity accounts
aptly for the experimentally observed 0.5 eV peak of the midinfrared band [3–5].

Finally, the slow zero-sound velocity near the Mott metal–insulator transition point at
half-filling is shown to identify with the velocity of the lower-energy branch of the twofold
excitation spectrum, thus providing a stringent consistency check of the quantum-liquid
description emerging from the present 1/N expansion scheme.
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Appendix

In this appendix we summarize the analytic expressions for the dispersionsωn(q), n = 1, 2,
of the two branches of the spectrum of elementary excitations, and the dimensionless
function u2(q), corresponding to the current matrix elements, that enter the optical
absorption (14) and the leading quantum-fluctuation corrections (18), (19) for the Drude
weight and the total optical weight.

Following the notation conventions of [10], the dispersionsωn(q), n = 1, 2, are given
by

ω2
1(q) = R(q) + 2

√
S(q)

ω2
2(q) = R(q) − 2

√
S(q)

(A1)

with

R(q) = [
ω(+)

q

]2 + [
ω(−)

q

]2 + τ 2
q − λ2

q − [
ν(+)

q

]2 − [
ν(−)

q

]2
(A2)

and

S(q) = [
ω(+)

q ω(−)
q − λqν

(−)
q

]2 + [
ω(+)

q τq − ν(+)
q λq

]2 − [
ω(−)

q ν(+)
q − ν(−)

q τq

]2
(A3)

where for an arbitrary wave vectorq = (qx, qy) the explicit forms of the coefficientsω(±)
q ,

τq, λq, andν(±)
q read

λq = zt ′

4

n2
e

(1 − ne)
(1 − cosqx cosqy) + zt ′

2
ne(1 + cosqx cosqy) (A4)

τq = λq − zJ

4
ne

[
1 + 1

2
(cosqx + cosqy)

]
(A5)

ν(+)
q = λq − zJ

4
ne(cosqx + cosqy) (A6)

ν(−)
q = zt

4
ne(cosqx − cosqy) (A7)

ω(+)
q = ν(+)

q + λq − τq + zt ′(1 − ne)(1 − cosqx cosqy) (A8)

ω(−)
q = ν(−)

q − zt

2
(1 − ne)(cosqx − cosqy). (A9)

The analytic expression for the functionu2(q) is very involved. However, the result
can be presented in a compact manner with the help of a four-component matrix notation
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[10]. To this end we introduce the 4× 4 matricesρ1, ρ2, andρ3, defined asρi = σi ⊗ 1,
i = 1, 2, 3, with the σi denoting the ordinary 2× 2 Pauli matrices. The same symbols
σi will also be used in the following to denote the 4× 4 matrices 1⊗ σi , i = 1, 2, 3, for
notational simplicity. We then have

u2(q) = 1
2[u2

x(q) + u2
y(q)] (A10)

whereu2
α(q), α = x, y, are positive-definite dimensionless functions expressed as traces

over 4× 4 matrices. Specifically,

u2
α(q) = −

(
1

4

)2 1

ω1(q)ω2(q)S(q)

{
Tr[vα(q)A(q, ω1(q))vα(q)A(q, −ω2(q))]

+ Tr[vα(q)A(q, ω2(q))vα(q)A(q, −ω1(q))]
}

(A11)

wherevα(q), α = x, y, andA(q, ω) are the 4× 4 real matrices defined below:

vx(q) = sinqx

[
−ε

(
1 − 3ne

2

)
cosqy − 1

2

(
1 − 3ne

2

)
σ3 + ε

2
ne cosqyσ1 + i

4
neρ1σ2

]
(A12)

vy(q) = sinqy

[
−ε

(
1 − 3ne

2

)
cosqx + 1

2

(
1 − 3ne

2

)
σ3 + ε

2
ne cosqxσ1 − i

4
neρ1σ2

]
(A13)

A(q, ω) = [ω + H(q)][ω2 − R(q) + 2M(q)] (A14)

with

H(q) = ω(+)
q ρ3 + ω(−)

q ρ3σ3 + τqρ3σ1 + iλqρ2 + iν(+)
q ρ2σ1 + iν(−)

q ρ2σ3 (A15)

and

M(q) = [
ω(+)

q ω(−)
q − λqν

(−)
q

]
σ3 + [

ω(+)
q τq − ν(+)

q λq

]
σ1 + i

[
ω(−)

q ν(+)
q − ν(−)

q τq

]
ρ1σ2.

(A16)

In conclusion it is worth emphasizing that the dispersionsωn(q), n = 1, 2, defined
in (A1), as well as the functionu2(q) defined in (A10), depend onq only through the
factors cosqx and cosqy and are symmetric under the interchange of variables(qx, qy):
ωn(qx, qy) = ωn(qy, qx), n = 1, 2, andu2(qx, qy) = u2(qy, qx).
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